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Abstract
A significant challenge in air quality index (AQI) prediction is to
accurately evaluate the potential outcomes after conducting inter-
ventions in pollutant factors such as industrial emissions for each
enterprise. Existing methods often suffer from spurious correlations
caused by unmeasured confounders and are lack of interpretability
of the model, leading to sub-optimal prediction performance. This
motivates us to propose a causal AQI prediction framework (CAP)
that employs a structural causal model (SCM) to characterize the
causal structural variability of various AQI factors for robust AQI
prediction. Specifically, we employ the front-door adjustment to
explicitly eliminate unmeasured confounders by intervening in in-
dustrial emissions from the target enterprise. Meanwhile, we take
industrial emissions of neighboring enterprises into account when
intervening in the target enterprise and simulate the dispersion
of industrial emissions through a Gaussian plume model based on
meteorological factors. Experiments on two real-world datasets
validate the superior performance of our model on AQI prediction
compared to the state-of-the-art baselines.
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1 Introduction
Industrial emissions from enterprises have become one of the most
serious environmental issues in many industrial cities and regions
[4, 18, 35]. However, when an area experiences severe pollution, the
government often roughly shuts down all the industrial enterprises
within this area to control the air pollution, resulting in significant
labor costs and economic losses. In fact, not all enterprises have an
impact on current pollution. For example, emissions from industrial
enterprises located in the downwind direction do not contribute to
current pollution. Therefore, to effectively ameliorate such a strat-
egy of “one-size-fits-all” [8] on pollution prevention and control, it
is necessary to accurately predict potential air quality index (AQI),
a standard metric for measuring air quality, when an intervention
(or treatment) is conducted on the target enterprise.

Existing AQI predictionmodels are usually categorized into three
types [11]: statistical models, deep learning models, and hybrid
models. From the data perspective, most existing studies usually
leverage climate and environmental data to improve AQI predic-
tion accuracy. Although statistical methods [26] work well when
the relation between climate and AQI is linear, they are weak in
handling massive and complex real-world data. On the other hand,
deep learning models and hybrid models [6, 36, 38] can deal with
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such cases by learning a spatio-temporal feature representation, but
they still suffer from spurious correlation caused by unmeasured
confounders, thus leading to sub-optimal prediction performance
and cannot discover the further interpretation of pollution causes.

One effective way to address the spurious correlation problem
is to learn the true causal relationship between the covariates and
the outcome variable. Jiang et al. [13] leverage the Granger causal-
ity test (GC) to examine whether one AQI related variable is the
cause of another variable, but it still cannot eliminate confound-
ing effects since GC is a statistical approach that cannot account
for unmeasured confounders, resulting in unsatisfied prediction
accuracy of AQI. A more reasonable causal modeling framework is
the structural causal model (SCM) [22, 23], which interprets causal
relationships among data to endow models with the capability to
quantify causal effects. However, to the best of our knowledge,
there is no work that predicts AQI based on SCM. More signifi-
cantly, existed studies rarely pay attention to industrial emission
data, which are often unavailable or indirect, and also may increase
confounding biases. Consequently, it is hard to accurately predict
the potential AQI after intervening in a certain industrial enterprise
(e.g., shut down or not).

To fill this gap, we aim to build a causal model based on the SCM
framework for AQI prediction that is capable of evaluating the po-
tential AQI after conducting interventions in industrial emissions
for each enterprise. Particularly, we consider five key variables
when building a causal graph as shown in Fig. 1(a), including in-
dustrial emissions 𝑋 , meteorological factors𝑊 (e.g., wind vectors),
AQI values 𝑌 , unmeasured confounders 𝐶 (e.g., complex policy
conditions), and mediator variables 𝑀 . Since pollutants emitted by
enterprises diffuse in the atmosphere under the influence of the
meteorological factors [19], the mediator variable 𝑀 is required
to describe the concentration of pollution in the atmosphere after
industrial emissions have diffused to a certain point in the vicinity.
In such cases, we can apply a front-door adjustment that could
eliminate unmeasured confounders𝐶 to predict potential AQI after
intervention in industrial emissions. Moreover, in reality, simulta-
neous emissions from multiple enterprises can collectively affect
the AQI measured at the local air quality monitoring station, thus
it is necessary to consider the emitting situations of its neighboring
enterprises 𝑋𝑛𝑒𝑖 at the same time [10].

In this paper, we propose a causal AQI prediction framework
(CAP for short) based on SCM. In particular, our approach considers
a principled way of dealing with the inherent causal structural vari-
ability [42] to eliminate unmeasured confounders and to achieve
robust AQI prediction. Briefly speaking, as shown in Fig. 1(a) and
Fig. 1(b), to accurately measure the potential outcomes of interven-
ing in industrial emissions, we employ the front-door adjustment
based on causal intervention [22, 23] by cutting off 𝐶 → (𝑋,𝑋𝑛𝑒𝑖 )
under an unbiased condition. In particular, complex policy con-
ditions are mentioned as unmeasured confounders 𝐶 . Due to the
difficulty of measuring policy conditions and the seriousness of
policy implementation, it is almost impossible for us to collect data
from a randomized controlled trial by intervening in industrial emis-
sions 𝑋 . However, in order to verify the validity of our approach
employing causal intervention to eliminate the effect of unmea-
sured confounders 𝐶 on industrial emissions 𝑋 , we partitioned the
dataset according to different time periods for this purpose. Taking

(a) causal graph for AQI with un-
measured confounders

(b) causal intervention for remov-
ing unmeasured confounders

(c) Enterprises provide emissions data and monitoring stations pro-
vide AQI readings. When the meteorological factors are given, the
causal relationship between industrial emissions and air quality
(red part) is explained by the model, which leads to a causal predic-
tion of the air quality index (green part).

Figure 1: AQI prediction from the perspective of causality.
𝐶: hidden confounders, 𝑋 : main industrial emissions, 𝑋𝑛𝑒𝑖 :
neighboring industrial emissions,𝑊 : meteorological factors,
𝑀 : mediator variables, 𝑌 : AQI values.

PM2.5 pollutants as an example, the government tends to tighten
the regulation of PM2.5 emissions during the fall and winter [9],
which is the high period of PM2.5 pollutants every year, instead of
relatively lax management in the summer. We seize this feature and
divide the PM2.5 industrial emission data in fall and winter into
the training set and the data in summer into the testing set. This
gives us a significant distributional difference between the training
and test set data, and the predictive performance of the test set will
prove the effectiveness and necessity of our method to eliminate
the unmeasured confounding factor 𝐶 [16, 17, 31].

To achieve this, a causal learning model is introduced to estimate
the causal effects among observational variables based on the causal
graph. Specifically, an AutoEncoder is employed to aggregate in-
dustrial emissions information from neighboring enterprises by cal-
culating the prior joint distribution between each pair of neighbors
𝑋 and 𝑋𝑛𝑒𝑖 with a normal distribution probability density function.
It is worth noting that a Gaussian plume model (GPM) is used to
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estimate the mediator variable 𝑀 , which denotes the diffusion of
industrial emissions. In addition, a temporal convolutional deep net-
work (TCN) is devised to learn the high-level representations of the
multi-source information in those time series variables (e.g., wind
vectors in meteorological factors𝑊 ). In this way, our causal-based
framework is capable of robustly predicting potential AQI after
causal intervention on industrial emissions, which is also verified
during empirical evaluations on two real-world datasets collected
by ourselves from a megacity to be detailed in later sections.

2 Related Works
2.1 Correlation Methods for AQI
Correlation method for AQI can generally be categorized into three
types: statistical models, deep learning models, and hybrid models.

Traditional statistical models have beenwidely used in air quality
prediction due to their simplicity. For example, the ARIMA model
[15, 20, 24] has been effective in capturing the temporal depen-
dencies in time-series data, making it suitable for short-term AQI
predicting. Similarly, regression models [26] have been applied to
model the relationship between AQI and various environmental
factors, such as temperature, humidity, and pollutant concentra-
tions. Moreover, BP neural networks [12, 14, 34], a type of artificial
neural network, have also been employed to model AQI by learning
the nonlinear relationships between input features and the target
AQI values.

In contrast, deep learningmodels and hybridmodels have demon-
strated remarkable representational capabilities, particularly in
capturing the complex patterns underlying air quality data. For
instance, Cui et al. [5] design a Transformer-based method for pre-
dicting hourly PM2.5 concentrations, leveraging the self-attention
mechanism to effectively model long-term temporal dependencies.
Similarly, Ni et al. [21] introduce the Gaussian-TCN, which inno-
vatively replaces the traditional activation function in TCN with a
Gaussian error current unit, improving the model’s ability to handle
temporal variations in AQI-related data.

However, one of the main limitations of standalone deep learning
models is their focus on capturing only temporal characteristics,
often neglecting the equally important spatial correlations present
in air quality data. To address this limitation, several studies [7,
39]have proposed hybrid models that integrate spatio-temporal
correlations by combining multiple architectures.

For example, Du et al. [6] propose a hybrid framework DAQFF,
which integrates CNN and Bi-LSTM. This model processes mul-
tivariate air quality-related time-series data from multiple mon-
itoring stations, enabling shared representation learning across
spatially distributed features. In addition, Zhao et al. [38] introduce
the MASTGN (Multi-Attention Spatio-Temporal Graph Network),
which constructs spatio-temporal structural graphs by integrating
atmospheric data from multiple monitoring stations. This model
employs a multi-attention mechanism to more efficiently mine the
intricate spatio-temporal dependencies within the data.

Although the above methods can capture complex patterns in
rich spatio-temporal information and show excellent performance
in AQI prediction, they neglect unmeasured confounders that may
lead the model to learn spurious spatio-temporal correlations, re-
sulting in biased prediction.

2.2 Causal Methods for AQI
Causal study is valuable for policy formulation and policy eval-
uation. In recent years, causal methods have gained increasing
attention in the context of Air Quality Index (AQI) analysis. For
example, Jiang et al. [13] and Zhu et al. [41] apply Granger causality
tests (GC) to identify causal relationships between data, address-
ing the challenges posed by data diversity. Similarly, Yu et al. [37]
employ a Difference-in-difference approach to evaluate the causal
impact of policies on AQI outcomes. While these statistical causal
methods are effective for analyzing the relationships between obser-
vational variables (e.g., dependent and independent variables), they
are inherently limited in accounting for unmeasured confounders.
As a result, the validity of their findings may be compromised by
confounding effects.

To address these limitations, advanced causal inference frame-
works have been developed. One effective framework is the Rubin
Causal Model (RCM) [25, 28–30, 32, 33, 40]. Weather2vec[27] is a
pioneered RCM-based model that successfully eliminates non-local
confounding by spatial-varying intervention. While this model
treats the meteorology factor as a confounder in studies of air pol-
lution, it is unfortunately rather limited to characterizing dedicated
causal relationships compared with treating it as a mediator. An-
other significant approach is the Structural Causal Model (SCM)
[22, 23], which provides a robust framework for interpreting causal
relationships within data. Despite its potential, the application of
SCM in AQI prediction remains underexplored, particularly in ad-
dressing confounding effects through causal intervention.

To bridge this gap, we propose a novel SCM-based framework
for AQI prediction that systematically mitigates confounding ef-
fects via causal intervention. By explicitly intervening in indus-
trial emissions, our approach enables causal AQI prediction. This
methodology not only enhances predictive accuracy but also offers
actionable insights for policymakers aiming to mitigate pollution
through targeted interventions.

3 Task Formulation
Our study introduces a new framework for predicting potential
AQI after intervening in industrial emissions. We denote the set
of industrial emission data from enterprises in an area as 𝑋 =

{𝑋1, 𝑋2, . . . , 𝑋𝑛} ∈ R𝑛×𝑡 , and 𝑋𝑖 = {𝑥 (1)
𝑖

, 𝑥
(2)
𝑖

, . . . , 𝑥
(𝑡 )
𝑖
}, where

𝑥
(𝑡 )
𝑖

represents the emission scale from the 𝑖-th enterprise at time
step 𝑡 . The meteorological factors, denoted by𝑊 , comprises the
wind velocity𝑊𝑣 ∈ R𝑡 and wind direction𝑊𝑑 ∈ (0◦, 360◦), which
significantly influence the dispersion of pollutants. The outcome
variable, 𝑌 ∈ R𝑡 , corresponds to the AQI, a critical metric for
assessing air quality.

Our observational data encompasses temporal sequences of
industrial emissions, meteorological conditions, and AQI values,
alongside the geographical coordinates of both industrial enter-
prises and air quality monitoring stations. We formalize the his-
torical input dataset as X = {(𝑋𝑖 ,𝑊𝑣,𝑊𝑑 ) |𝑡 = 1, 2, . . . , 𝑡𝑜𝑏𝑠 }, where
𝑡𝑜𝑏𝑠 signifies the last observed time step. Subsequently, the future
prediction is defined asY = {𝑌 |𝑡 = 𝑡𝑜𝑏𝑠 +1, 𝑡𝑜𝑏𝑠 +2, . . . , 𝑡𝑜𝑏𝑠 +𝑡𝑝𝑟𝑒𝑑 }.

From the probabilistic perspective, the target of predicting is to
estimate 𝑃 (𝑌 |𝑋,𝑊 ). Conventional data-driven methods parameter-
ize the target distribution as a predicting model 𝑓Θ (𝑋,𝑊 ) where Θ
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denotes model parameters. These methods learn model parameters
from historical data.

Causal prediction: Unmeasured confounders often cause mod-
els to obtain spurious correlations. To mitigate confounding ef-
fects, causal prediction views the predicting problem of likelihood
as estimate 𝑃 (𝑌 |𝑑𝑜 (𝑋 ),𝑊 ), where 𝑑𝑜 (·) denotes the intervention
operation [22, 23]. This implies that if we want to know the ef-
fect of intervening in industrial emissions of an enterprise on the
AQI, causal prediction may be an excellent solution. For example,
suppose that at time 𝑡 , the meteorological factors𝑊 = 𝑤𝑡 and
industrial emissions from the enterprise A are 𝑋A = 𝑥𝑡A , the
causal prediction on the AQI values 𝑌 by intervening in industrial
emissions of the enterprise A can be computed by 𝑑𝑜 (𝑋 = 𝑥𝑡 ) as
𝑃 (𝑌 |𝑑𝑜 (𝑋 = 𝑥𝑡A ),𝑊 = 𝑤𝑡 ). However, it cannot be ignored that
when an enterprise is emitting pollutants that affect AQI, its neigh-
boring enterprises may be emitting pollutants at the same time, i.e.,
if the location of the enterprise B is in the vicinity of the enterprise
A, and assuming that industrial emissions of the neighboring en-
terprise B are𝑋B = 𝑥𝑡B , then it is possible that industrial emissions
of enterprise B could have an impact on AQI values 𝑌 at the same
time as industrial emissions from enterpriseA. If we consider only
the intervention in industrial emissions of enterprise A, then the
calculated 𝑃 (𝑌 |𝑑𝑜 (𝑋 = 𝑥𝑡A ),𝑊 = 𝑤𝑡 ) will be biased at this point.
Therefore, causal prediction takes the intervention in industrial
emissions of neighboring enterprises into account and corrects
𝑃 (𝑌 |𝑑𝑜 (𝑋 ),𝑊 ) to 𝑃 (𝑌 |𝑑𝑜 (𝑋,𝑋𝑛𝑒𝑖 ),𝑊 ).

4 Methodology
The overall framework of CAP is shown in Fig.2.

4.1 Structural Causal Model
We formulate the causalities among target industrial emissions 𝑋 ,
neighboring industrial emissions 𝑋𝑛𝑒𝑖 , unmeasured confounders
𝐶 (e.g. complex policy conditions), meteorological factors𝑊 (e.g.
wind vectors), mediator variables 𝑀 and AQI-values 𝑌 based on
SCM, as shown in Fig. 1(a). The directed edges represent the causal
relationships between nodes. Since pollutants are continuously dif-
fused in the atmosphere by meteorological factors, and therefore
𝑀 is used as the mediator variable to characterize the concentra-
tion of pollution in the atmosphere after industrial emissions have
diffused to a certain point (air quality monitoring stations) under
given meteorological factors𝑊 .

4.2 Causal Intervention via Front-door
Adjustment

Unmeasured confounders 𝐶 is represented as a common cause
for 𝑋 , 𝑋𝑛𝑒𝑖 and 𝑌 which is often unobservable, we cannot use
back-door adjustment according to the path (𝑋,𝑋𝑛𝑒𝑖 ) ← 𝐶 → 𝑌 .
So we introduce the mediator variable𝑀 to apply the front-door
adjustment based on the path 𝐶 → (𝑋,𝑋𝑛𝑒𝑖 ) → 𝑀 ,𝑀 → 𝑌 ← 𝐶 ,
and cut off the link 𝐶 → (𝑋,𝑋𝑛𝑒𝑖 ). Formally, we have:

𝑝 (𝑌 |𝑑𝑜 (𝑋,𝑋𝑛𝑒𝑖 ),𝑊 )
(𝑎)
=

∫
𝑚

𝑝 (𝑀 |𝑑𝑜 (𝑋,𝑋𝑛𝑒𝑖 ),𝑊 )𝑝 (𝑌 |𝑑𝑜 (𝑀 ),𝑊 )𝑑𝑀

(𝑏)
=

∫
𝑚

𝑝 (𝑀 |𝑋,𝑋𝑛𝑒𝑖 ,𝑊 )𝑑𝑀
∫
𝑥

∫
𝑥𝑛𝑒𝑖

𝑝 (𝑌 |𝑋,𝑋𝑛𝑒𝑖 ,𝑀,𝑊 )𝑝 (𝑋,𝑋𝑛𝑒𝑖 )𝑑𝑋𝑑𝑋𝑛𝑒𝑖 .

(1)

In Eq. (1)(a), 𝑝 (𝑀 |𝑑𝑜 (𝑋,𝑋𝑛𝑒𝑖 ),𝑊 ) denotes the causal effect of 𝑋
and 𝑋𝑛𝑒𝑖 on𝑀 , 𝑝 (𝑌 |𝑑𝑜 (𝑀),𝑊 ) denotes the causal effect of𝑀 on 𝑌 .
According to Fig. 1(b), the back-door path (𝑋,𝑋𝑛𝑒𝑖 ) ← 𝐶 → 𝑌 ←
𝑀 is𝑑-separated by the collider𝑌 . Therefore, 𝑝 (𝑀 |𝑑𝑜 (𝑋,𝑋𝑛𝑒𝑖 ),𝑊 ) =
𝑝 (𝑀 |𝑋,𝑋𝑛𝑒𝑖 ,𝑊 ) where 𝑋 , 𝑋𝑛𝑒𝑖 ,𝑊 are all observable values which
can be used to calculate𝑀 . As to 𝑝 (𝑌 |𝑑𝑜 (𝑀),𝑊 ), we can block the
back-door path 𝑀 ← (𝑋,𝑋𝑛𝑒𝑖 ) ← 𝐶 → 𝑌 without measuring 𝐶 .
This is because controlling 𝐶 is equal to controlling (𝑋,𝑋𝑛𝑒𝑖 ) [22].
As such, we can achieve 𝑝 (𝑌 |𝑑𝑜 (𝑀),𝑊 ) by conducting a back-door
adjustment over the observable industrial emissions (𝑋,𝑋𝑛𝑒𝑖 ). Thus
we obtain the causal effect free from the unmeasured confounders
𝐶 , as shown in Eq. (1)(b).

Up to this point, we have liberated 𝑝 (𝑌 |𝑑𝑜 (𝑋,𝑋𝑛𝑒𝑖 ),𝑊 ) from 𝐶 .
We then try to consider the prediction on potential AQI from the ob-
servational data. According to Eq. (1)(b), to obtain𝑝 (𝑌 |𝑑𝑜 (𝑋,𝑋𝑛𝑒𝑖 ),𝑊 ),
we need to build three suitable backbone models to represent
𝑝 (𝑀 |𝑋,𝑋𝑛𝑒𝑖 ,𝑊 ), 𝑝 (𝑌 |𝑋,𝑋𝑛𝑒𝑖 , 𝑀,𝑊 ) and 𝑝 (𝑋,𝑋𝑛𝑒𝑖 ).

4.2.1 Modeling 𝑝 (𝑋,𝑋𝑛𝑒𝑖 ). We initially identify neighboring enter-
prises within a 5-kilometer radius of the target enterprise 𝑋 . These
neighboring enterprises, denoted as 𝑋𝑛𝑒𝑖 = {𝑋1, 𝑋2, ..., 𝑋𝑘 } ∈ R𝑘×𝑡 ,
where 𝑘 signifies the nearest 𝑘 neighboring enterprises and 𝑡 repre-
sents the selected temporal resolution, with each time step equating
to one hour.

Subsequently, we aggregate the emission data from these neigh-
boring enterprises. As illustrated in Fig. 2, an AutoEncoder is en-
gaged to distill the essence of the industrial emission features from
neighboring enterprises, yielding a low dimensional representation
𝑍 ∈ R𝑡 . We then use the Reconstruction Error (RE) as the loss
function to train the AutoEncoder to efficiently extracts features of
the input data, expressed as:

L𝑟𝑒𝑐𝑜𝑛 =
1
𝑁

𝑁∑︁
𝑛=1
∥ 𝑋𝑛𝑒𝑖 − 𝑋𝑛𝑒𝑖 ∥2 . (2)

By utilizing 𝑍 , the computation of the prior probability is refor-
mulated as 𝑝 (𝑋,𝑍 ). Assuming a bivariate normal distribution for
the joint distribution of 𝑋 and 𝑍 , denoted as (𝑋,𝑍 ) ∼ N (𝜇, Σ), the
prior probability is modeled by the probability density function of
the bivariate normal distribution:

𝑓 (𝑋,𝑍 ) = 1
2𝜋 |Σ| 𝑒𝑥𝑝

(
− 1
2

(
𝑋 − 𝜇𝑋
𝑍 − 𝜇𝑍

)𝑇
Σ−1

(
𝑋 − 𝜇𝑋
𝑍 − 𝜇𝑍

))
, (3)

where 𝜇 =

(
𝜇𝑋
𝜇𝑍

)
and Σ are model parameters denoting the mean

vector and covariance matrix of the binary normal distribution,
respectively, and 𝑓 (𝑋,𝑍 ) ∈ R𝑡 .

4.2.2 Modeling 𝑝 (𝑀 |𝑋,𝑋𝑛𝑒𝑖 ,𝑊 ). To estimate the mediator vari-
able 𝑀 , we parameterize 𝑝 (𝑀 |𝑋,𝑋𝑛𝑒𝑖 ,𝑊 ) as ℎ(𝑋,𝑋𝑛𝑒𝑖 ,𝑊 ). Since
𝑀 is unobservable, if we use a deep learning approach to estimate
𝑀 , it will increase the parameters that the model needs to learn,
which may affect the prediction performance of the model. There-
fore, since𝑀 represents the pollution level of industrial emission 𝑋
after it spreads to the vicinity of the air quality monitoring station,
we decided to use a physics-based model to simulate the diffusion of
industrial emission 𝑋 . Specifically, we use GPM. Assuming uniform
and direct wind flow, conservation of mass of pollutants during dif-
fusion and continuous and uniform emissions from the source [1].
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Figure 2: The architecture of CAP.

In GPM, emissions downwind disperse laterally from the plume’s
centerline in a normal distribution pattern. In addition, we omit the
effect of elevation, assuming horizontal dispersion only. Therefore,
GPM is expressed as:

𝑀 (𝑝, 𝑞) = 𝑋

𝑊𝑣

1
𝜎𝑞
√
2𝜋

𝑒𝑥𝑝 ( −𝑞
2

2𝜎2𝑞
), (4)

𝜎𝑞 = 0.11𝑝 (1 + 0.0004𝑝)−
1
2 , (5)

where, as depicted in Fig. 2, the 𝑝-axis direction of the coordinate
system is the downwind direction, with 𝑝 indicating the downwind
distance and 𝑞 representing the crosswind distance. The model-
calculated diffusion of industrial emissions is denoted by𝑀 (𝑝, 𝑞).
The atmospheric diffusion coefficient in the 𝑞-axis direction is rep-
resented by 𝜎𝑞 . Assuming an atmospheric stability class 𝐹 [2], the
diffusion coefficient 𝜎𝑞 is detailed in Eq. (5).

As illustrated in Fig. 1(c), both the target enterprise and neigh-
boring enterprises are treated as discrete entities in the pollution
dispersion simulation. The aggregate effect of their emissions is cap-
tured by the sum 𝑔(𝑋,𝑋𝑛𝑒𝑖 ,𝑊 ) =

∑
𝑀 (𝑝, 𝑞) ∈ R𝑡 . If the downwind

distance 𝑝 is negative on the 𝑝-axis, indicating that the enterprise is
located downwind of the air qualitymonitoring station, the𝑀-value
of the enterprise is set to zero.

4.2.3 Modeling 𝑝 (𝑌 |𝑋,𝑋𝑛𝑒𝑖 ,𝑊 ,𝑀). This conditional probability
function is used to predict the AQI through the industrial emis-
sions 𝑋 , neighboring industrial emissions 𝑋𝑛𝑒𝑖 , the meteorological
factors𝑊 , and the mediator variable𝑀 . We summarize this relation-
ship through a likelihood method, expressing 𝑝 (𝑌 |𝑋,𝑋𝑛𝑒𝑖 ,𝑊 ,𝑀)
as 𝑔(𝑋,𝑋𝑛𝑒𝑖 ,𝑊 ,𝑀), which can be any backbone models suitable
for time series AQI prediction. As shown in Fig. 2, we design the
backbone model based on TCN.

TCN is particularly adept at sequence modeling due to their
causal convolution strategy, which respects the temporal order of
inputs by considering past data for each convolution operation. The
input to TCN is a concatenation of data denoted as (𝑋 ∥𝑍 ∥𝑊 ∥𝑀),
where ∥ symbolizes the concatenation operation. By leveraging
dilated convolutions, TCN expand their receptive field, enabling
the model to discern both local and global patterns within the data,
a critical capability for understanding complex temporal dynam-
ics. Moreover, the TCN architecture includes residual connections,
which are instrumental in combating the vanishing gradient prob-
lem and allow for the learning of more nuanced and complex repre-
sentations of temporal data. The full connect layer then synthesizes
these features to output 𝑌 values that align with the input time
step. Specifically expressed as:

𝑌 = 𝑇𝐶𝑁 (𝑋,𝑍,𝑊 ,𝑀) ∈ R𝑡 . (6)

4.2.4 Estimating 𝑝 (𝑌 |𝑑𝑜 (𝑋,𝑋𝑛𝑒𝑖 ),𝑊 ). Leveraging our established
models, we now proceed to estimate 𝑝 (𝑌 |𝑑𝑜 (𝑋,𝑋𝑛𝑒𝑖 ),𝑊 ). Given
the continuous nature of our data, the standard method of summing
probability distributions for discrete variables, as outlined in Eq.
(1)(b), is inapplicable. Consequently, we undertake a transformation
and derivation of Eq. (1)(b) to address this issue, expressed as:

𝑝 (𝑌 |𝑑𝑜 (𝑋,𝑋𝑛𝑒𝑖 ),𝑊 )
(𝑎)
=

∫
𝑚

ℎ(𝑋,𝑋𝑛𝑒𝑖 ,𝑊 ) 𝑑𝑀
∫
𝑥

∫
𝑧

𝑔(𝑋,𝑍,𝑀,𝑊 ) 𝑓 (𝑋,𝑍 ) 𝑑𝑋𝑑𝑍

(𝑏 )
≈ 𝑆 · 1

𝑛

𝑛∑︁
𝑖=1

ℎ(𝑋,𝑋𝑛𝑒𝑖 ,𝑊 ) 𝑓 (𝑋,𝑍 )𝑔(𝑋,𝑍,𝑀,𝑊 ) .

(7)

The derivation is explained step-by-step as follows:
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Table 1: Performance comparison with baselines. We bold the best results and underline the best baselines. Note that * means
statistical significance with 𝑝-value < 0.001.

Dataset Method 1-24h 25-48h

MSE RMSE MAE SMAPE MSE RMSE MAE SMAPE

PM2.5-CQW

MLP 0.2713 0.5102 0.3819 78.22% 0.2765 0.5160 0.3858 78.57%
GRU 0.1120 0.3322 0.2481 54.14% 0.2314 0.4677 0.3564 61.73%
LSTM 0.0874 0.2929 0.2150 48.33% 0.2046 0.4040 0.3403 70.95%

Gaussian-TCN 0.2207 0.4665 0.3477 67.75% 0.2152 0.4598 0.3434 68.00%

DAQFF 0.1519 0.3830 0.2883 64.39% 0.1705 0.4049 0.3027 68.01%
VMD-EEMD-LSTM 0.1368 0.3644 0.2733 58.18% 0.1811 0.4075 0.3051 61.15%

DeepAir 0.0376 0.1928 0.1457 37.37% 0.0406 0.1982 0.1485 38.06%

Causal-STGAT 0.0219 0.1657 0.1254 33.74% 0.0318 0.1768 0.1319 34.98%
CAP (ours) 0.0204* 0.1388* 0.0934* 24.43%* 0.0310* 0.1392* 0.0949* 25.13%*

SO2-CQE

MLP 0.2631 0.5020 0.3761 77.89% 0.2601 0.4994 0.3737 77.86%
GRU 0.1270 0.3543 0.2628 55.95% 0.2244 0.4615 0.3411 58.92%
LSTM 0.0828 0.2857 0.2099 47.35% 0.2013 0.3933 0.3179 68.13%

Gaussian-TCN 0.2198 0.4656 0.3466 67.81% 0.2198 0.4661 0.3497 67.94%

DAQFF 0.1525 0.3819 0.2921 65.01% 0.1807 0.4011 0.3009 68.33%
VMD-EEMD-LSTM 0.1423 0.3520 0.2647 56.14% 0.1777 0.4132 0.3180 65.15%

DeepAir 0.0332 0.1810 0.1364 35.70% 0.0337 0.1791 0.1441 35.82%

Causal-STGAT 0.0194 0.1383 0.1050 30.06% 0.0471 0.2177 0.1761 37.94%
CAP (ours) 0.0164* 0.1252* 0.0855* 22.58%* 0.0223* 0.1307* 0.1022* 23.77%*

• (a) holds according to the above modeling process and the
front-door adjustment.
• (b) is based on the Monte carlo method (MCM), a powerful
numerical technique for approximating the value of integrals
by random sampling, which can address the challenge of
making the integrals in the model difficult to get analytically
computed due to the complexity of the model. In Eq. (7)(b),
𝑛 denotes the number of randomly sampled samples, and 𝑆
is a constant that denotes the length of the interval, so the
existence of 𝑆 does not affect our final prediction for 𝑌 , and
we can omit it from the computation.

To summarize, we can approximate the probability distribution
𝑝 (𝑌 |𝑑𝑜 (𝑋,𝑋𝑛𝑒𝑖 ),𝑊 ) by Eq. (7)(b), and then for the causal prediction
of 𝑌 can be expressed as:

𝑌𝑐𝑎𝑢𝑠𝑎𝑙 = ℎ (𝑋,𝑋𝑛𝑒𝑖 ,𝑊 ) 𝑓 (𝑋,𝑍 )𝑔 (𝑋,𝑍,𝑀,𝑊 ), (8)

where 𝑌𝑐𝑎𝑢𝑠𝑎𝑙 is the target value for prediction. We use 𝐿2 loss
function to optimize the network model during training to improve
the accuracy of causal prediction:

L𝑝𝑟𝑒𝑑 =
1
𝑛

𝑛∑︁
𝑖=1
(𝑌𝑡𝑟𝑢𝑒 − 𝑌𝑐𝑎𝑢𝑠𝑎𝑙 )2, (9)

where 𝑌𝑡𝑟𝑢𝑒 denotes the true value of the AQI observed. L𝑝𝑟𝑒𝑑
denotes the prediction loss of the model, which calculates the differ-
ence between the causal predicted value and the true value. Based
on all the modules established, our loss function during training
can be organized as follows:

L = L𝑟𝑒𝑐𝑜𝑛 + 𝛼L𝑝𝑟𝑒𝑑 , (10)

where 𝛼 is a hyperparameter. Unlike traditional likelihood-based
predictions, which are often susceptible to confounders, our causal
prediction framework eliminates the influence of confounders, thus
gain a unbiased AQI prediction.

5 Experiments
In this section, we evaluate the effectiveness of CAP through ex-
periments conducted on real-world datasets.

5.1 Experimental Settings
Datasets: To our best knowledge, there is, so far, no publicly avail-
able dataset in the field of AQI intervention assessment on industrial
emissions. We collected two real-world datasets, PM2.5-CQW and
SO2-CQE, which provide rich industrial emission data, meteoro-
logical data and AQI data collected from air quality monitoring
stations. The PM2.5-CQW dataset covers the PM2.5 emission data
of more than 300 enterprises in the western region of Chongqing
Municipality for one year (from Jan. 1, 2022 to Dec. 31, 2022), while
the SO2-CQE dataset includes the SO2 emission data of more than
200 enterprises in the eastern region. The data are collected at an
hourly frequency. In our approach, we select the last 70% of the data
(from Nov. 1, 2022 to Jun. 30, 2023) as the training set, the first 15%
of the data (from Jul. 1, 2022 to Aug. 31, 2022) as the test set, and
the remaining 15% of the data (from Sep. 1, 2022 to Oct. 31, 2022) as
the validation set. The reason for dividing the dataset in this way
is that both SO2 and PM2.5 are pollutants with low emissions in
summer and high emissions in fall and winter, so the government’s
control of industrial emissions of these two pollutants will be high
in winter and low in summer. That is, the effect of the unmeasured
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confounder 𝐶 on industrial emissions 𝑋 is larger in the training
set and smaller in the test set, corresponding to our causal plots
for pre- and post-intervention in Fig. 1(a) and Fig. 1(b). In this way,
the prediction effect of our method on the test set will demonstrate
that eliminating unmeasured confounding effects is effective for
the AQI prediction problem and enables robust AQI prediction.
Baseline: To evaluate the effectiveness of our proposed approach,
we conduct a comprehensive comparison of CAP with various
AQI prediction methods. These methods are categorized into three
groups, namely deep Learning Models, Hybrid Models and Causal
Inference Models respectively.
Evaluation Metrics: We evaluate the performance of methods
with Mean Square Error (MSE), Root Mean Square Error (RMSE),
Mean Absolute Error (MAE), Symmetric Mean Absolute Percentage
Error (SMAPE), and Standard Deviation (SD).

5.2 Comparison with Baselines
To ensure fairness, we deploy the same environment, loss function,
and dataset for all models. We compare CAP with baseline models
for AQI prediction and run each method five times, recording the
average metrics. The final results are presented in Table 1.

Figure 3: The performance comparison for 24h prediction.

Figure 4: The performance comparison for 48h prediction.

The results show that our proposed CAP framework outperforms
the baseline model for all metrics on both 24h prediction and 48h
AQI prediction tasks. We categorize these methods according to
deep learning models, hybrid models, and causal models. By com-
bining multiple deep learning models, the hybrid model has more
feature extraction capability, so the hybrid model generally outper-
forms the deep learning model. Among them, DAQFF [6] leverages
multivariate air quality-related time series data, employing a hy-
brid deep learning model to extract spatio-temporal correlations.

DeepAir [36] takes into account the interaction of various factors
with the AQI respectively, modeling these to capture their complex
effects, and it excels in both long-term and short-term predicting
over existing shallow models. However, these methods do not ex-
plicitly define the causal relationships between factors, and the
input of multiple variables introduces a multitude of confounders,
leading to biased predictions.

Causal-STGAT [3] is a causal inference-basedmodel, which is ini-
tially evaluated for human trajectory prediction but can be readily
applied to air quality prediction, demonstrating good generalization.
However, due to the unmeasured confounders in our data, it is nec-
essary to estimate them first, which affects the model’s predictive
performance and increases computational costs. It could be said
that it is not designed to eliminate the effects of unmeasured con-
founders, only addressing the impact of observed confounders. In
fact, most confounders are unobservable and one of the main contri-
butions of our model is the elimination of the effects of unobserved
confounders, which is crucial for accurate AQI prediction.

In addition, for the two methods that are most competitive
(DeepAir, Causal-STGAT) with our method, we report on com-
parison with SD in the appendix. And in Fig. 3 and Fig. 4, we
visualize the performance of CAP with the next best two models.
It can be seen that our method is predicted to track the trend best.
That is, our method can more accurately predict the potential AQI
after eliminating unobserved confounding, and the model is more
resistant to interference, achieving more robust predictions.

5.3 Ablation Study
In order to elucidate the performance improvement of our method,
we further investigated three variants of CAP named CAP-F, CAP-
G, and CAP-C. These three variants disable some of the components
of the model. Each of these methods is subjected to ablation experi-
ments on the PM2.5-CQW dataset, as described below:
CAP-F. It disables the modeling of 𝑓 (𝑋,𝑍 ), formulated as:

𝑌𝐶𝐴𝑃−𝐹 = ℎ(𝑋,𝑋𝑛𝑒𝑖 ,𝑊 )𝑔(𝑋,𝑍,𝑀,𝑊 ) . (11)

CAP-G. It disabled the modeling of ℎ(𝑋,𝑋𝑛𝑒𝑖 ,𝑊 ), which is ex-
pressed as:

𝑌𝐶𝐴𝑃−𝐺 = 𝑓 (𝑋,𝑍 )𝑔(𝑋,𝑍,𝑀,𝑊 ). (12)
CAP-C. It simultaneously disables the modeling of 𝑓 (𝑋,𝑍 ) and
ℎ(𝑋,𝑋𝑛𝑒𝑖 ,𝑊 ), formulated as:

𝑌𝐶𝐴𝑃−𝐶 = 𝑔(𝑋,𝑍,𝑀,𝑊 ) . (13)

Table 2 and Table 3 summarizes the predictive performance of
CAP and its three variants. The results indicate that CAP outper-
forms in all scenarios. The superior performance of CAP over three
variants suggests that using only parts of the models for AQI pre-
diction may not yield satisfactory results. Taking CAP-G as an
example, it overlooks the influence of (𝑋,𝑋𝑛𝑒𝑖 ) on𝑀 and focuses
solely on the impact of 𝑀 on 𝑌 , i.e., the incomplete explanation
of causal effects limits the performance of the three variants. This
underscores the importance of interpreting causal relationships
between data based on causal inference.

In addition, is it effective to consider the intervention in neigh-
bors? Does considering meteorological factors improve the perfor-
mance of the model? Comparative studies are conducted on these
two questions as well. As shown in Table 2, when the intervention
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Table 2: Comparison with variants of our method on PM2.5-
CQW for 24h prediction.

Method 1-24h

MSE RMSE MAE SMAPE

CAP-F 0.2645 0.5013 0.3802 78.49%
CAP-G 0.0810 0.2692 0.1627 44.41%
CAP-C 0.4600 0.6719 0.5071 91.15%

w/o 𝑋𝑛𝑒𝑖 0.0212 0.1599 0.1298 28.64%
w/o𝑊 0.0207 0.1399 0.0974 24.71%

CAP 0.0204 0.1388 0.0934 24.43%

Table 3: Comparison with variants of our method on PM2.5-
CQW for 48h prediction.

Method 25-48h

MSE RMSE MAE SMAPE

CAP-F 0.3253 0.6055 0.4291 91.71%
CAP-G 0.0599 0.2714 0.1701 46.31%
CAP-C 0.5103 0.7099 0.5917 99.31%

w/o 𝑋𝑛𝑒𝑖 0.0312 0.1662 0.1339 31.14%
w/o𝑊 0.0313 0.1672 0.1391 32.12%

CAP 0.0310 0.1392 0.0949 25.13%

in neighboring enterprises is disabled, the model performance is
slightly degraded. The model performance is also affected when
we ignore the meteorological factor𝑊 . Thus, the CAP framework
is not only effective but also easy to interpret.

To further demonstrate the effectiveness of the CAP framework,
we also do comparative studies on different experimental settings.
When constructing the model, we assume that the data follows a
bivariate normal distribution. We further explore alternative as-
sumptions, such as the bivariate Cauchy, bivariate gamma, and
bivariate Laplace distributions, and conduct comparative analy-
ses, as shown in Fig. 5(a) and Fig. 5(b). The results indicate that,
compared to other distributional assumptions, the CAP framework,
which assumes a bivariate normal distribution, achieves superior
performance, reflecting the validity of our model’s assumptions.
In Fig. 5(c) and Fig. 5(c), 𝑘 = {1, 4, 8, 12} represents the number of
selected neighboring enterprises. When 𝑘 = {4, 8, 12}, the predic-
tive performance of the model is comparable, but larger 𝑘 values
lead to increased computational costs and may not be conducive
to accurate government control of industrial emissions. Therefore,
we selected 𝑘 = 4 as the default setting. Finally, we systematically
evaluated the sensitivity of the model performance to the hyperpa-
rameter 𝛼 . As shown in Fig. 5(e) and Fig. 5(f), it is obvious that two
loss functions are of equal importance. When 𝛼 = 0.5, the model
relies more on RE to guide the training process, which may cause
the model to fall into a local optimum. When 𝛼 > 1, the model
may ignore the important information provided by RE during the
optimization process. Therefore, an unbalanced training strategy
may impair the model’s learning of key features.

(a) Effects of Bivariate Distribu-
tion on MAE for 24h prediction

(b) Effects of Bivariate Distribu-
tion on MAE for 48h prediction

(c) Effects of neighbor number 𝑘
on MAE for 24h prediction

(d) Effects of neighbor number 𝑘
on MAE for 48h prediction

(e) Effects of different 𝛼 on MAE
for 24h prediction

(f) Effects of different 𝛼 on MAE
for 48h prediction

Figure 5: Comparison with different experimental settings
on PM2.5-CQW.

6 Conclusion and Future Work
In this paper, we construct a causal graph to describe the causal
relationship between industrial emissions and AQI based on SCM.
We then propose a CAP framework to predict potential AQI that
eliminates unmeasured confounders through the intervention in
industrial emissions from the target enterprise and its neighboring
enterprises. Our framework is the first to successfully apply SCM
to the problem of AQI prediction. In particular, benefiting from
our skillful partitioning of the dataset, we are able to demonstrate
the validity of robust AQI prediction that eliminates unobserved
confounding effects. However, our framework for AQI prediction
still relies on the mediator variable𝑀 and only considers time slices
in explaining causality. Therefore, we will expand the proposed
CAP framework in the following directions: 1) addressing scenarios
that do not conform to the front-door adjustment, 2) considering
the effect of time-lagged variables in the causal graph.
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A Supplementary Experiments
In this section, we report standard deviation results for model per-
formance. We compare with the two most competitive baselines, as
shown in Table 4 and Table 5. From the tables, our method achieves
the best performance with less volatility and better stability in both
the 24h and 48h AQI prediction tasks.
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Table 4: Performance comparison with SD for 24h prediction.

Dataset Method 1-24h

MSE RMSE MAE SMAPE

PM2.5-CQW
DeepAir 0.0376 (+/-0.0004) 0.1928 (+/-0.0004) 0.1457 (+/-0.0009) 37.37% (+/-0.16%)

Causal-STGAT 0.0219 (+/-0.0001) 0.1657 (+/-0.0003) 0.1254 (+/-0.0009) 33.74% (+/-0.15%)
CAP 0.0204 (+/-0.0002) 0.1388 (+/-0.0002) 0.0934 (+/-0.0003) 24.43% (+/-0.09%)

SO2-CQE
DeepAir 0.0332 (+/-0.0004) 0.1810 (+/-0.0004) 0.1364 (+/-0.0008) 35.70% (+/-0.14%)

Causal-STGAT 0.0194 (+/-0.0004) 0.1383 (+/-0.0005) 0.1050 (+/-0.0009) 30.06% (+/-0.13%)
CAP 0.0164 (+/-0.0003) 0.1252 (+/-0.0002) 0.0855 (+/-0.0004) 22.58% (+/-0.10%)

Table 5: Performance comparison with SD for 48h prediction.

Dataset Method 24-48h

MSE RMSE MAE SMAPE

PM2.5-CQW
DeepAir 0.0406 (+/-0.0006) 0.1982 (+/-0.0004) 0.1485 (+/-0.0008) 38.06% (+/-0.20%)

Causal-STGAT 0.0318 (+/-0.0003) 0.1768 (+/-0.0003) 0.1319 (+/-0.0007) 34.98% (+/-0.11%)
CAP 0.0310 (+/-0.0002) 0.1392 (+/-0.0002) 0.0949 (+/-0.0004) 25.13% (+/-0.08%)

SO2-CQE
DeepAir 0.0337 (+/-0.0005) 0.1791 (+/-0.0003) 0.1441 (+/-0.0008) 35.82% (+/-0.20%)

Causal-STGAT 0.0471 (+/-0.0007) 0.2177 (+/-0.0003) 0.1761 (+/-0.0009) 37.94% (+/-0.14%)
CAP 0.0223 (+/-0.0004) 0.1307 (+/-0.0002) 0.1022 (+/-0.0005) 23.77% (+/-0.11%)
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